
Joint Representation Learning for Multi-Modal Transportation Recommendation

Hao Liu1, Ting Li2, Renjun Hu3, Yanjie Fu4, Jingjing Gu5, Hui Xiong1∗
1The Business Intelligence Lab, Baidu Research, National Engineering Laboratory of

Deep Learning Technology and Application, Beijing, China, 2National University of Defense Technology, Changsha, China
3SKLSDE Lab, Beihang University, Beijing, China, 4Missouri University of Science and Technology, Missouri, USA

5Nanjing University of Aeronautics and Astronautics, Nanjing, China
liuhao30@baidu.com, liting6259@gmail.com, hurenjun@buaa.edu.cn

fuyan@mst.edu, gujingjing@nuaa.edu.cn, xionghui@gmail.com

Abstract

Multi-modal transportation recommendation has a goal of
recommending a travel plan which considers various trans-
portation modes, such as walking, cycling, automobile, and
public transit, and how to connect among these modes. The
successful development of multi-modal transportation recom-
mendation systems can help to satisfy the diversified needs
of travelers and improve the efficiency of transport networks.
However, existing transport recommender systems mainly
focus on unimodal transport planning. To this end, in this
paper, we propose a joint representation learning frame-
work for multi-modal transportation recommendation based
on a carefully-constructed multi-modal transportation graph.
Specifically, we first extract a multi-modal transportation
graph from large-scale map query data to describe the concur-
rency of users, Origin-Destination (OD) pairs, and transport
modes. Then, we provide effective solutions for the optimiza-
tion problem and develop an anchor embedding for transport
modes to initialize the embeddings of transport modes. More-
over, we infer user relevance and OD pair relevance, and in-
corporate them to regularize the representation learning. Fi-
nally, we exploit the learned representations for online multi-
modal transportation recommendations. Indeed, our method
has been deployed into one of the largest navigation Apps
to serve hundreds of millions of users, and extensive exper-
imental results with real-world map query data demonstrate
the enhanced performance of the proposed method for multi-
modal transportation recommendations.

Introduction
Transport modes, such as walking, cycling, automobile, pub-
lic transit, are means for traveling from an origin to a des-
tination. Transportation mode recommendation refers to the
effort of finding the most appropriate transport tools with
awareness of user preferences (e.g., costs, times) and trip
characteristics (e.g., purpose, distance). In this study, we in-
vestigate this problem with large-scale navigation App data.

In prior literature, a majority of work focuses on im-
proving unimodal transport planning. For example, the stud-
ies in (Dai et al. 2015; Rogers and Langley 1998; Chen,
Shen, and Zhou 2011; Luo et al. 2013) aim at recommend-
ing the most cost-effective driving routes. The study in (Liu
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et al. 2014) optimizes bus routing strategies based on hu-
man mobility patterns. However, in fact, a large number of
transport planning requests involve the decision process of
choosing an appropriate one from multiple available trans-
port modes. According to statistics from Baidu Map1, one
of the world’s largest navigation Apps, over ten million of
users request the route planning information of at least two
transport modes (e.g., driving and bus) for same OD pair
every day. Intuitively, the transport mode preferences vary
over different users and spatiotemporal contexts. For exam-
ple, metros are more cost-effective than taxis for most urban
commuters; economically disadvantaged people may prefer
cycling and walking to others for local travel, if the trans-
port options are inadequate. Such socio-economic person-
alized effects in choosing transport modes present a unique
challenge, but, meanwhile, a great potential for improving
transportation route planning: if we can decide an appro-
priate transport mode for a trip, it is easier to plan an op-
timized route in the following. Unfortunately, there are lim-
ited studies that intend to systematically address the multi-
modal transportation recommendation problem: given a user
and an OD pair, how to effectively identify the most appro-
priate transport mode?

Smart transport mode recommendations have a number
of advantages, including but not limited to reducing trans-
port times, balancing traffic flows, reducing traffic conges-
tion, and, ultimately, promoting the development of intelli-
gent transportation systems. However, it is a non-trivial task
to infer the most appropriate transport mode. Specifically,
there are three major challenges.

The first challenge comes from the transport heterogene-
ity. In particular, transport modes are heterogeneous in terms
of the means of conveyance. For example, cycling and walk-
ing are human-powered while bus and taxi are gasoline-
powered. In addition, transport modes are heterogeneous
in terms of infrastructures, e.g., walking require pedestrian
lanes, and cycling require bike lanes. Moreover, transport
modes are heterogeneous in terms of time-efficiency, cost,
and comfortableness. Consequently, users choose different
transport modes for different OD pairs. Then, one research
issue is: how to incorporate the transport heterogeneity for
multi-modal transportation recommendation? The second

1https://map.baidu.com/



challenge is that feedbacks in navigation Apps are incom-
plete and implicit. In particular, due to privacy issues, when
a user queries a transport plan from an origin to a destina-
tion, the preference feedbacks, such as clicking and view-
ing a routing plan of a transport mode, are mostly implicit.
Thus, for effective recommendations, it is critical to ad-
dress the issue of incomplete and implicit feedbacks in data.
The third challenge is geo-spatial locality. Despite the ex-
ploratory nature of human mobility (Song et al. 2010), each
user usually and repeatably visits a very small number of
places (∼25) (Alessandretti et al. 2018). In other words, the
frequently-traveled and preferred OD pairs are very limited
for most users. As a result, it is challenging for the proposed
method to learn robust transport mode preferences of users
and OD pairs from the limited and localized feedback data.

To tackle these challenges, we propose Trans2Vec, a joint
representation learning based framework for multi-modal
transportation recommendation. Specifically, inspired by the
recent success of word embedding (Mikolov et al. 2013)
and network embedding (Cui et al. 2017), we first model
users, OD pairs, and transport modes together into a multi-
modal transportation graph and jointly learn the user prefer-
ence and OD preference in a unified latent space. The rep-
resentation of incomplete user and OD pair is curated since
the preference can be learned by capturing the second order
proximity from the multi-modal transportation graph. Be-
sides, an anchor based method is proposed to model the het-
erogeneity of transport modes. Moreover, we incorporate the
user-user and OD-OD relevance to identify the interconnec-
tions between users and between ODs to overcome the data
sparsity and geo-spatial locality issues. Finally, we propose
a simple yet effective method to support real-time transport
mode recommendations in the online mapping service. Our
major contributions are summarized as follows:

• We formally define the transport mode recommendations
problem identified from a real-life scenario.

• We propose Trans2Vec, a general framework for trans-
port mode recommendations. Trans2Vec is a joint opti-
mization framework that combines the historical travel
behaviors and user/OD relevance for learning transport
mode preference. An online recommendation method is
also proposed to support the real-time recommendations.

• We conduct extensive experimental evaluations based on
real-world datasets. The results demonstrate the effective-
ness of our proposed framework.

• Trans2Vec has been deployed in a map and navigation
App and serves hundreds of millions of users every day.

Preliminaries
We first introduce some important definitions and then for-
malize our problem to investigate.

Assuming there is a set U of users, in which each user
u ∈ U is associated with a vector A(u) of demographic at-
tributes, such as age, gender and job type. Besides, we par-
tition a city into a set R of non-overlapping regions. Each
region r ∈ R is associated with a set P(r) of POIs, that rep-
resent the functionalities of regions (Yuan, Zheng, and Xie
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Figure 1: An illustrative example of a multi-modal trans-
portation graph. The nodes of the graph include users, trans-
port modes, and OD pairs. Solid lines indicate observed
user-mode and OD-mode edges, whereas dashed lines in-
dicate the user-user and OD-OD relevance edges.

2012). Considering the existence of users U and regions R,
we next define some essential concepts:
Definition 1 Origin-Destination (OD) Pair. An OD pair
od = (o, d) is a pair of regions in which there are travel
demands from o ∈ R to d ∈ R. Be sure to note that, given
an OD pair (o, d), o = d indicates an intra-region trip. We
further denote the set of OD pairs by OD.
Definition 2 Transport Mode. A transport mode m ∈M is
a mean by which passengers move from an origin to a des-
tination. Typical transport modes are bike, bus, taxi, train,
ferry, and airplane. Different transport modes yield different
travel times, expenses, safety, and comfortableness. Conse-
quently, both users and OD pair have personalized prefer-
ences and appropriateness on specific modes. In this study,
we focus on intra-city transport modes: bus, taxi, train, bi-
cycle, and walk.
Definition 3 Travel Event. A travel event q ∈ Q is a triplet
〈u,m, od〉, which represents the user u ∈ U travel between
the OD pair od ∈ OD by the transport mode m ∈M.

Definition 4 Multi-modal Transportation Graph(MMTG).
A multi-modal transportation graph is a heterogeneous
undirected weighted graph G = (V, E), where V = U ∪
OD ∪M is a set of heterogeneous nodes, and E = Eum ∪
Eodm ∪ Euu ∪ Eodod is a set of heterogeneous edges includ-
ing user-mode edges Eum, OD-mode edges Eodm, user-user
edges Euu and OD-OD edges Eodod. When it is clear from
the context, we directly refer a node inG to as a user, an OD
pair or a mode.

Figure 1 gives an example of a multi-modal transporta-
tion graph. We obtain edges of G from both travel events
and user/OD attributes. The weight of a user-mode (resp. an
OD-mode) edge is the frequency of travel events that are as-
sociated with the user (resp. OD) and the transport mode.
The weight of a user-user (resp. an OD-OD) edge is defined
as the relevance of two corresponding nodes (details are in
Section Methodology). With the aforementioned notations
and concepts, we finally formalize our problem as follows:
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Figure 2: The Trans2Vec framework.

Definition 5 The Multi-modal Transportation Recom-
mendation Problem. Given a multi-modal transportation
graph G, a user u, and an OD pair od, we aim to recom-
mend the most appropriate transport mode m ∈ M for the
user u to travel between the OD pair od.

Methodology
In this section, we introduce the proposed analytic
framework Trans2Vec. We first present an overview of
Trans2Vec, then detail each step of the proposed framework.

Framework Overview
We study the multi-modal transportation recommendation
problem via joint representation learning on multi-modal
transportation graphs. Figure 2 shows an overview of the
proposed analytic framework. It consists of three major
tasks: (1) multi-modal transportation graph construction, (2)
joint representation learning to capture the transport mode
preferences of users and ODs, and (3) online transport mode
recommendations.

Specifically, we construct a multi-modal transportation
graph based on heterogeneous source data including a map
database, user demographic attributes, and OD POIs infor-
mation. The graph thus contains rich semantics, i.e., travel
event occurrence and user/OD relevance. Second, we de-
velop a joint representation learning method that, given the
multi-modal transportation graph G, learns a d-dimensional
(d � |V|) latent representation xv for each node v ∈ V .
Our method exploits a novel anchor embedding strategy to
model and maintain the heterogeneity of different transport
modes and further incorporates user and OD relevance into
the base embedding model. Finally, we propose a simple yet
effective online recommendation method to recommend the
most proper transport mode.

Base Model
The basic idea of the proposed method is from word and
network embedding (Mikolov et al. 2013; Perozzi, Al-Rfou,
and Skiena 2014), which assumes that semantically-related

words and correlated nodes have the similar context in sen-
tences and network structures. We analogize travel events to
sentences and random walks, in order to learn embeddings
of users, OD pairs, and transport modes. If a user, an OD
pair, and a transport mode co-occur in the same travel event,
it implies both the user and the OD pair have certain prefer-
ence for the transport mode. More specifically, a travel event
〈u,m, od〉 ∈ Q can indicate that the embeddings of the user
u and the OD pair od should be close to the embedding of
the transport mode m.

We denote the corresponding embeddings of u, od and m
by xu, xod and xm, respectively. The user-mode and OD-
mode relationships of all the travel events in Q are repre-
sented in the form of Eum ∪ Eodm. We then achieve the goal
by maximizing the following objective function for all of the
edges in Eum ∪ Eodm:

O0 =
∑

(u,m)∈Eum

log σ(x>u ·xm)+
∑

(od,m)∈Eodm

log σ(x>od·xm),

(1)
where σ(x) = 1/(1 + e−x) is the sigmoid function.

Note that the objective in Eq. (1) reaches a global optima
when all the nodes have the same embeddings. The problem
is that the captured preference is uninformative if we omit
the disfavor information. To avoid converging to the mean-
ingless trivial solution, we adopt the negative sampling strat-
egy (Mikolov et al. 2013), such that for each (u,m) ∈ Eum
(resp. (od,m) ∈ Eodm), we randomly sample another mode
m′ ∈M, i.e., negative sample, and move the embedding xu
(resp. xod) away from xm′ . Correspondingly, the objective
function is rewritten as:

O0 =
∑

(u,m)∈Eum

m′∼U

(
log σ(x>u · xm) + log σ(−x>u · xm′)

)
+

∑
(od,m)∈Eodm

m′∼U

(
log σ(x>od · xm) + log σ(−x>od · xm′)

)
.

(2)

In Eq. (2), U is a uniform distribution for generating nega-
tive mode samples so that U(m) = 1/|M|. As we can see,
the trivial solution is not an optima anymore because the
negative sample terms also need to be maximized.

Transport Mode Anchor Embedding
The multi-modal transportation graph has unique character-
istics. In the graph, there are only several (e.g., 5 in our
case) transport mode nodes whereas there are a large num-
ber of user nodes and OD nodes. A transport mode node
connects with numerous users and OD pairs. Consequently,
transport mode nodes can be regarded as hub nodes. In other
words, almost every node in the graph is reachable to each
other via two-hop paths. If we apply classic network em-
bedding techniques (Perozzi, Al-Rfou, and Skiena 2014;
Tang et al. 2015), all of the nodes will have similar em-
beddings due to the high second-order proximity between
almost every pair of the nodes. However, this will lead to
a serious issue: we are not able to learn discriminative em-
beddings of nodes for effective multi-modal transportation
recommendation. To address such challenge, we propose an
anchor embedding strategy for transport mode nodes. The



primary objective is to ensure that each mode is assigned a
discriminative embedding that reflects its inherent context
information.

More specifically, we maintain each transport mode as a
fixed anchor vector in the latent space. The anchor vector
will not be changed after initialization. In the learning proce-
dure, only user and OD embeddings are optimized to maxi-
mize Eq. (2). Consequently, as long as the anchor vectors are
initialized properly, each user or OD pair will be allocated
in an appropriate location in the hidden space that captures
the distinct preference of the user or the OD pair for each
transport mode.

In addition, the strategy provides great potential to in-
corporate prior human knowledge regarding the transport
modes into the initialization step of anchor vectors. For in-
stance, compared with the transport modes of bus, train, and
airplane, the mode of walk is more similar to the one of
bike because: both walk and bike are human powered while
bus, train, and airplane are gasoline-powered. Such human
knowledge can be reflected in the distance between the an-
chor vectors of the modes.

Along this line, we develop a data-driven approach to
quantifying the relevance between transport modes:

rel(mi,mj) =

∑
vi∈Z Fmi

(vi)Fmj
(vi)√∑

vi∈Z Fmi
(vi)2

√∑
vi∈Z Fmj

(vi)2
,

(3)
where Z = U ∪ OD, Fmi(·) computes the frequency the
input v ∈ Z ever co-occurred with transport mode mi in Q.

After measuring the mode-mode pairwise relevance, we
employ a greedy strategy to initialize transport mode an-
chor embeddings. In particular, we first initialize the two
transport modes of the highest relevance. In each of fol-
lowing iterations, we initialize the mode node of highest
overall relevance with previously initialized mode nodes
under the pairwise relevance order constraints. For exam-
ple, assuming rel(mbus,mtaxi) > rel(mbus,mbicycle) >
rel(mtaxi,mbicycle), with anchor embedding xbus and
xtaxi initialized, the distance of anchor embedding xbicycle
should satisfy rel(xbus,xtaxi) > rel(xbus,xbicycle) and
rel(xbus,xtaxi) > rel(xtaxi,xbicycle), simultaneously.
Note that each entry of anchor embedding is initialized
with an uniform distribution between [− 1

2d ,
1
2d ]. As a result,

transport modes frequently co-used by same users and same
ODs are closer to each other.

Modeling User and OD Relevance
In real life, the choice of transport mode is highly influenced
by the characteristics of both users and OD pairs. For exam-
ple, business users may prefer traveling by taxi than by bus
for long-distance travel; on the other hand, the bus may be
in general popular for urban commuter to go to work. That
is, users (OD pairs) with similar characteristics would share
similar transport mode preferences. Next, we propose meth-
ods to measure the relevance of users and OD pairs and fur-
ther incorporate the relevance to refine our framework.

Measuring user relevance. We collect the demographic
attributes of users in order to measure the user-user rele-

vance. In particular, the attributes of user u is represented
by a vector A(u) where each dimension is a categorical de-
mographic attribute. In practice, different attributes have dif-
ferent impacts on the relevance of users regarding transport
mode preference. We thus learn a vector w of weights by
predicting transport modes taken by users via a linear re-
gression model, i.e., argminw,b

∑
(u,m,od)∈Q(w

>A(u) +
b− l(m))2, where each transport mode m is assigned a dis-
tinct random label l(m) in {1, . . . , |M|}. Given two users u
and u′, the user relevance c(u, u′) is then given by:

rel(u, u′) =
∑
i

wiI
(
A(u)i,A(u′)i

)
/
∑
i

wi, (4)

where subscript i means the i-th element of a vector, I(·) is
a 0–1 indication function which equals to 1 iff. the input cat-
egorized attributes are the same. Since mode preferences are
only shared by users having high relevance, we thus collect
the set Euu of user relevance edges as {(u, u′)|u ∈ U , u′ ∈
N(u)} where N(u) includes the top-K most relevant users
of u. Note that N(u) can be efficiently retrieved as the K-
nearest neighbors in a KD-tree where each user u is repre-
sented by the Hadamard product w �A(u). Finally, we in-
corporate user relevance into our framework as constraints
by maximizing the objective function below:

O1 = −1

2

∑
(u,u′)∈Euu

(
x>u · xu′ − rel(u, u′)

)2
. (5)

Measuring OD relevance. Considering that distance and
travel purpose (e.g., home-work, home-commercial) are
among the most influential factors for choosing transport
modes, here we calculate the OD relevance from the above
two perspectives. Given an OD pair od = (o, d), the dis-
tance distod is computed by Haversine formula. On the other
hand, the travel purpose is highly related to the functions of
regions o and d, which can further be captured by the region
POI distribution (Yuan, Zheng, and Xie 2012). Specifically,
a region r is modeled as a POI distribution vector pr com-
puted from the POI set P(r); each dimension represents the
number of POIs in a certain category such as residence, en-
tertainment and transport station. The OD pair od is repre-
sented as a concatenated vector of the above two views:

od = dod ⊕ po ⊕ pd. (6)
Since the impact of each dimension also varies, we learned
another vector w of weights in exactly the same way as user
relevance (we also reuse the notation w as this does not in-
troduce confusion). The relevance between two OD pairs od
and od′ is computed as:

rel(od, od′) = exp{−||w � (od− od′)||}. (7)
Note that Eqs. (4) and (7) differ from each other in the way
computing relevance, as they are dealing with categorical
and numerical features, respectively. Finally, we incorporate
the OD relevance via maximizing the following objective:

O2 = −1

2

∑
(od,od′)∈Eodod

(
x>od · xod′ − rel(od, od′)

)2
, (8)

where Eodod = {(od, od′)|od ∈ OD, od′ ∈ N(od)} is the
set of OD relevance edges, and, N(od) includes the top-K
most relevant OD pairs of od retrieved by another KD-tree.



Algorithm 1: Joint learning algorithm of Trans2Vec
Input: A multi-modal transportation graph G,

number d of dimensions, number K, learning
rate α, parameters β1 and β2;

Output: xu/xod/xm for u/od/m∈ U /OD/M;
1 Initialize entries of xu/xod/xm with

uniform[− 1
2d ,

1
2d ];

2 Compute user and OD relevance with Eqs. (4) & (7);
3 iter ← 1;
4 repeat
5 foreach (u, u′) ∈ Euu do
6 xu ← xu − αβ1

iter

(
x>u · xu′ − rel(u, u′)

)
xu′ ;

7 xu′ ← xu′ − αβ1

iter

(
x>u · xu′ − rel(u, u′)

)
xu;

8 foreach (od, od′) ∈ Eodod do
9 xod ←

xod − αβ2

iter

(
x>od · xod′ − rel(od, od′)

)
xod′ ;

10 xod′ ←
xod′ − αβ2

iter

(
x>od · xod′ − rel(od, od′)

)
xod;

11 foreach (u,m) ∈ Eum do
12 Sample a transport mode m′ ∼ U ;
13 xu ← xu − α

iter

(
σ(x>u · xm)− 1

)
xm −

α
iterσ(x

>
u · xm′)xm′ ;

14 foreach (od,m) ∈ Eodm do
15 Sample a transport mode m′ ∼ U ;
16 xod ← xod − α

iter

(
σ(x>od · xm)− 1

)
xm −

α
iterσ(x

>
od · xm′)xm′ ;

17 iter ← iter + 1;
18 until converge;
19 return xu/xod/xm for u/od/m∈ U /OD/M;

Model Training and Online Recommendations
The optimization objective of our method jointly consid-
ers traditional heterogeneous network embedding, negative
sampling, user-user graph regularization, and OD-OD graph
regularization:

O = O0 + β1O1 + β2O2, (9)

where β1 and β2 are hyperparameters that regularize the im-
portance of user and OD relevance. We utilize stochastic gra-
dient descent to train the embeddings. The overall learning
process is presented in Algorithm 1.

After deriving the embeddings, we propose a real-time
and effective method to compute the preference score of
each transport mode m given a user u and an OD pair od:

f(u, od,m) = γx>u · xm + (1− γ)x>od · xm, (10)

where γ is a hyperparameter to control the weights of user
preference and OD preference. Finally, we rank the transport
modes based on the computed scores and return the one with
the highest score as the recommendation.

Experiments
Using large-scale real-life datasets, we present an extensive
experimental study to evaluate: (1) the overall performance

Notation Description BEIJING SHANGHAI

|Q| # of travel events 1,137,688 1,117,981
|U| # of users 318,879 316,060
|OD| # of ODs 375,165 350,904
|M| # of modes 5 5

Table 1: Statistics of datasets

of Trans2Vec, (2) the parameter sensitivity, (3) the transport
mode relevance and (4) the robustness of our approach.

Experimental Setups
Data description. We choose two datasets BEIJING and
SHANGHAI to test our approach. Both of them are produced
based on the map queries and user feedbacks on the Baidu
Map, in the corresponding cities from April 1, 2018 till Au-
gust 20, 2018. More specifically, a travel event is recorded if
a user issues an OD query and clicks on a specific transport
mode. We also use the POI and user profile data collected by
the same navigation Apps to generate features of users and
OD pairs. The statistics of our datasets are summarized in
Table 1.

Evaluation metrics. We adopt the overall NDCG2, as well
as the weighted precision (PREC), recall (REC) and F1 met-
rics to evaluate the performance. For the last three weighted
metrics, we first compute results at transport mode level and
then combine the results scaled by the relative frequency of
each transport mode. Also note that the NDCG metric takes
the orders of all transport modes into consideration and the
rest metrics only care about the top-1 recommended mode.
Finally, the REC metric is equivalent to the overall accu-
racy in our case as we recommend a transport mode for each
travel event.

Baseline algorithms. We compare our full approach
Trans2Vec with two recommendations methods, two em-
bedding learning methods and one variant of Trans2Vec.
• LR uses logistic regression for transport mode recommen-

dations, which, given a user u and an OD pair od, takes
the user attribute vector of A(u), the distance dod and the
fraction of historical rides using each transport mode by
u and between od as input features.

• LTR is a LambdaMart (Burges 2010) learning-to-rank
method whose input features are the same as LR except
that it only uses the fraction of historical rides using the
transport mode to rank.

• PTE (Tang, Qu, and Mei 2015) first learns user, OD and
transport mode embeddings by treating {u, od} as the
document and mode m as the label for each travel event
〈u,m, od〉, and utilizes logistic regression that takes the
corresponding embeddings as input for recommendations.

• Metapath2Vec (Dong, Chawla, and Swami 2017) is the
same to PTE except that it learns embeddings from ran-
dom walks following meta-path U–M–OD–M–U–. . . .

• BTrans2Vec is the base model of Trans2Vec which does
not incorporate user and OD relevance.
2The overall NDCG refers to NDCG@5 in this paper.



Algorithm BEIJING SHANGHAI
NDCG@5 PREC REC F1 NDCG@5 PREC REC F1

LR 0.804 0.704 0.589 0.633 0.848 0.682 0.657 0.658
LTR 0.824 0.667 0.662 0.664 0.830 0.671 0.666 0.668
PTE 0.770 0.493 0.518 0.499 0.807 0.564 0.610 0.585

Metapath2Vec 0.731 0.718 0.439 0.515 0.736 0.728 0.451 0.528
BTrans2Vec 0.876 0.682 0.736 0.704 0.878 0.695 0.754 0.718
Trans2Vec 0.893 0.700 0.770 0.711 0.891 0.708 0.778 0.719

Table 2: Overall performance
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Figure 3: Parameter sensitivity on BEIJING

Implementations. We use the data from April through
July for training, i.e., learning embeddings, counting his-
torical numbers of rides and training models, and the rest
data for testing. We use the recommended parameters for all
baselines, and fixed learning rate α = 0.5 and 0.3 for BEI-
JING and SHANGHAI, respectively, number d of dimensions
to 64, number K of relevance neighbors to 5, and regulariz-
ing parameters β1, β2 and γ to 0.1, 0.3 and 0.5, respectively,
by default for our BTrans2Vec and Trans2Vec (we will re-
port the sensitivity analysis later).

Experimental Results
Overall performance. In the first set of experiments, we
evaluate the overall performance of all tested approaches for
transport mode recommendation. We test the performance
on both BEIJING and SHANGHAI datasets using the four
metrics. The results are reported in Table 2.

As can be seen, both our basic BTrans2Vec and com-
plete Trans2Vec approaches achieve significantly better
performance compared with the rest tested baselines on
both datasets using all metric except PREC. Indeed, the
NDCG@5, REC and F1 of BTrans2Vec is already (5.1%,
5.0%, 8.9%, 14.3%)3, (12.2%, 8.1%, 18.1%, 30.0%) and
(6.6%, 4.5%, 16.9%, 19.0%) higher than those of (LR, LTR,
PTE, Metapath2Vec) on average on the two datasets, re-
spectively. Moreover, using (NDCG@5, REC, F1), our com-
plete Trans2Vec further outperforms BTrans2Vec by (1.5%,
2.9%, 0.4%) on average, respectively. These results indicate
that our joint representation learning technique enhanced
with the anchor embedding strategy is effective for captur-
ing transport mode preference. And the incorporated user
and OD relevances do have positive impacts for transport

3% refers to absolute percentage points throughout the paper.

mode recommendation.
On the other hand, our approaches are slightly worse in

terms of PREC, compared with Metapath2Vec. While the
REC of BTrans2Vec and Trans2Vec are consistently much
better than the one of Metapath2Vec. Indeed, BTrans2Vec
and Trans2Vec strike a better balance between the PREC and
REC, as illustrated by performance evaluated by the more
comprehensive metric F1.

Parameter sensitivity. Due to the space constraints, here
we report the impacts of the number d of dimensions, the
number K of relevance neighbors, and regularizing parame-
ters β1 and β1 on BEIJING data. The results on SHANGHAI
are similar. Each time we vary a parameter, set others to their
default values, and evaluate the performance of Trans2Vec
using all metrics.

To test the impacts of the number d of dimensions, we
vary d from 16 to 256. The results are reported in Fig. 3(a).
Overall, our approach is robust to the selection of d. A small
d is already sufficient for distinguishing transport modes
considered in our case. Also note that when increasing d
from 16 to 32, the REC increases at the cost of obtaining
worse PREC.

To test the impacts of the number K of relevance neigh-
bors, we vary K from 0 to 50. The results are reported in
Fig. 3(b), including the ones of BTrans2Vec with K = 0.
There can be observed a remarkable improvement when
varying K from 0 to 1. The performance degenerates with
larger K, especially for PREC, possibly because noises are
introduced. Finally, we note that it suffices to use a small K,
e.g., 5 and 10.

To test the impacts of parameter β1, we varied β1 from
0 to 3. The results are reported in Fig. 3(c). When vary-
ing β1, the scores of all tested metrics first slightly increase
and then decrease. The best performance is achieved when
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Figure 4: Pairwise transport mode relevance matrix

β1 ∈ [0.1, 0.3]. And we admit that the user relevance only
has a minor improvement, possibly because the correlation
between available user attributes and transport mode prefer-
ence is not such strong compared the OD relevance.

To test the impacts of parameter β2, we also vary β2 from
0 to 3. The results are reported in Fig. 3(d). Again, when
varying β1, all tested scores first increase and then decrease.
And when β2 ∈ [0.3, 1.0], incorporating OD relevance re-
sults in a remarkable improvement.

Transport mode relevance. Figure 4 reports the pairwise
transport mode relevance according to Eqn. 3. We can ob-
serve that transport modes can be clustered into two groups:
car, taxi, bus in one group and bus, walk, bicycle in another
group. Bus, as the nexus of two groups, has relatively high
relevance with taxi and bicycle. Such groups make sense
since these two groups have significantly different charac-
teristics in efficiency, cost, and environmental impact.

Robustness check. To evaluate the robustness of
Trans2Vec, we first group users (resp. OD pairs) into
four subgroups with K-means algorithm and then test the
performance on each group of users (resp. OD pairs) based
on our online recommendation method and the learned
representations. Here we only report the results on BEIJING
data, shown in Fig. 5, and, again, the results on SHANGHAI
are similar. Observe that the performance of Trans2Vec is
stable in different groups of users and OD pairs. Indeed, the
standard derivative is less than 1.5% in all our tests using the
four metrics. That is, our Trans2Vec framework is robust
for different transport mode recommendation scenarios.

Related Work
Transportation recommendation. Unimodal transporta-
tion recommendation has been extensively studied in previ-
ous work (Chen, Shen, and Zhou 2011; Luo et al. 2013; Bao
et al. 2012; Ge et al. 2011). Personalized route planning was
first considered in (Rogers and Langley 1998) to improve
transportation recommendation quality, and PRP (Funke and
Storandt 2015) computes personalized routes on huge road
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Figure 5: Robustness check on BEIJING

networks in a real-time fashion. A few work (Liu 2011;
Borole et al. 2013) discussed generating multi-modal short-
est routes based on heterogeneous transportation network
and real-time transit data. Although the algorithms men-
tioned above improve the route recommendation satisfac-
tion, these methods cannot be utilized for multi-modal trans-
portation recommendation.

Network embedding. Network embedding (Cui et al.
2017) has become an emerging topic since the first semi-
nal work DeepWalk (Perozzi, Al-Rfou, and Skiena 2014).
DeepWalk is inspired from word representation learning
method word2vec (Mikolov et al. 2013), which uses ran-
dom walks in networks to stimulate sentences in language
models. And after that random walks have been a general
tool for learning embeddings, such as node2vec (Grover
and Leskovec 2016) and metapath2vec (Dong, Chawla, and
Swami 2017), to name a few. Almost at the same time
as DeepWalk, LINE (Tang et al. 2015) is proposed to
learn network embedding via preserving the first and sec-
ond order pairwise proximities. Finally, network embedding
has also found successful applications in various geospa-
tial tasks such as POI recommendations (Feng et al. 2017;
Chang et al. 2018), anomaly detection (Hu et al. 2016) and
region function profiling (Yao et al. 2018; Fu et al. 2018;
Wang et al. 2018a; 2018b).

In this work, we exploit network embedding in a new
scenario, i.e., multi-modal transportation recommendation,
which has not been studied earlier. In addition, consider-
ing the distinct structure of our multi-modal transportation
graph, we propose a novel anchor embedding strategy for
maintaining transport mode embeddings.

Conclusions
In this paper, we present Trans2Vec, an analytic frame-
work for multi-modal transportation recommendation. From
a multi-modal transportation graph perspective, we con-
struct a heterogeneous graph that encodes rich semantics
from multi-source data. We then apply joint representation
learning on the constructed graph to capture the transport
mode preference of both users and OD pairs. In addition, a
novel anchor embedding strategy and user and OD relevance
were further equipped in the joint representation learning
method. Extensive experiments demonstrate the effective-
ness of Trans2Vec using real-life datasets.
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