
Competitive Analysis for Points of Interest
Shuangli Li1,2†, Jingbo Zhou2,3∗, Tong Xu1, Hao Liu2,3, Xinjiang Lu2,3, Hui Xiong4∗

1School of Computer Science, University of Science and Technology of China, 2Business Intelligence Lab, Baidu Research
3National Engineering Laboratory of Deep Learning Technology and Application, China, 4Rutgers University

lsl1997@mail.ustc.edu.cn,{zhoujingbo,liuhao30,luxinjiang}@baidu.com,tongxu@ustc.edu.cn,hxiong@rutgers.edu

ABSTRACT
The competitive relationship of Points of Interest (POIs) refers to the
degree of competition between two POIs for business opportunities
from third parties in an urban area. Existing studies for competitive
analysis usually focus on mining competitive relationships of enti-
ties, such as companies or products, from textual data. However,
there are few studies which have a focus on competitive analysis for
POIs. Indeed, the growing availability of user behavior data about
POIs, such as POI reviews and human mobility data, enables a new
paradigm for understanding the competitive relationships among
POIs. To this end, in this paper, we study how to predict the POI
competitive relationship. Along this line, a very first challenge is
how to integrate heterogeneous user behavior data with the spatial
features of POIs. As a solution, we first build a heterogeneous POI
information network (HPIN) from POI reviews and map search
data. Then, we develop a graph neural network-based deep learn-
ing framework, named DeepR, for POI competitive relationship
prediction based on HPIN. Specifically, DeepR contains two compo-
nents: a spatial adaptive graph neural network (SA-GNN) and a POI
pairwise knowledge extraction learning (PKE) model. The SA-GNN
is a novel GNN architecture with incorporating POI’s spatial in-
formation and location distribution by a specially designed spatial
oriented aggregation layer and spatial-dependency attentive prop-
agation mechanism. In addition, PKE is devised to distill the POI
pairwise knowledge in HPIN being useful for relationship predic-
tion into condensate vectors with relational graph convolution and
cross attention. Finally, extensive experiments on two real-world
datasets demonstrate the effectiveness of our method.
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1 INTRODUCTION
To sustain the prosperity of business, it is critical to providing
an effective understanding of their competitive environment. For
example, identifying competitors of a company can help to make
a reasonable price level and appropriate management strategy for
business. The study of competitive relationship prediction has been
a hot research topic for a long time [4, 7]. Most of the existing works
aim at solving the competition prediction between social events,
companies or products [17, 25, 28, 29]. With the wide availability
of Point-of-Interest (POI) data, we propose to investigate a new
unique perspective for understanding the competitive environment
by measuring the competition between POIs.

POI competitive relationship prediction aims to identify the de-
gree of competition between two POIs to secure business from a
third party in an urban area. POIs, like bars, retail stores, restau-
rants, and hotels, usually have to strive for limited users to survive.
Therefore, being aware of the competitive relationship among POIs
is fundamental to the shopkeeper of the POI to keep the business
alive and thriving. Our study also has a lot of potential applications
for location-based services, like POI recommendation, local mar-
keting and location-based advertising. For example, the inferred
competitive relationships can be used as features for advertising
prediction models.

Previous studies of competitive relationship prediction cannot
be applied to POIs. Most of the existing works focus on identifying
comparative entities from sentences in text data like reviews, social
networks and web pages [12, 17, 25]. However, such comparative
evidence for POIs is often absent in text data. For example, it is quite
rare to find the comparative sentence contains specific names of
POIs (e.g., a KFC store) in POI reviews. Meanwhile, there is a large
amount of user behavior data about POIs which can help to enable
a new paradigm for understanding the relationships among POIs.
If two POIs with similar functionalities have common users, they
tend to be competitive. Besides, the user-generated reviews of a POI
also contain many text descriptions of the POI. How to integrate
such heterogeneous but useful information with the spatial features
of POIs for competitive relationship prediction remains a unique
research challenge.

In this paper, we propose a graph neural network-based (GNN-
based) Deep learning framework for competitive Relationship pre-
diction, named DeepR for short. The DeepR framework is running
over a carefully designed heterogeneous POI information network
(HPIN) which integrates the POI spatial feature, user behavior data
and POI review data. To the best of our knowledge, we are the first
to study the POI competitive relationship prediction problem.

The construction of HPIN enables us to investigate the POI
competitive relationship prediction problem with heterogeneous
data. In HPIN, we consider three context factors related to POI
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competitive relationship, which are spatial context, user behavior
context, and aspect context. The spatial context represents the
surrounding environment and relative positions of POIs in spatial
space. The user behavior context captures relations among POIs
hidden in the map search query data which records users’ actions
on POIs on an online map service platform, like Google Maps and
Baidu Maps. Here we build a POI co-query graph where the node
is a POI and an edge weight records how many users search the
two POIs in a short time interval. The aspect context reflects the
major services of a POI extracted from reviews. All these factors are
integrated into a heterogeneous POI information network (HPIN)
which is illustrated in Figure 2. A detailed explanation of HPIN will
be introduced later.

The DeepR framework adopts the Graph Neural Network (GNN)
as the basic model since GNN has achieved state-of-the-art perfor-
mance for many relational learning problems. Particularly, due to
the unique features of POIs, DeepR contains a novel spatial adap-
tive graph neural network (named SA-GNN) and a POI pairwise
knowledge extraction learning (named PKE) model.

The SA-GNN is a novel GNN architecture tailored for POI com-
petitive relationship prediction, which can handle the POI’s spatial
information and location distribution. Compared with other com-
mon graphs, an important feature of the POI graph (in HPIN) is
that the relative spatial positions are important for competitive
relationship because: 1) the nearby POIs are more likely to be com-
petitive; 2) the spatial distribution of POIs also affects the result.
For example, given a POI 𝑝𝑖 , its competitive environment is more
intense if all the competitors are evenly distributed around 𝑝𝑖 , com-
pared with the case that all the competitors are on one side of 𝑝𝑖 .
However, there are two drawbacks of traditional message-passing
based GNN: 1) losing the spatial information of POIs and their
neighbors; 2) lacking the ability to capture distant-range spatial
location dependencies. These limitations degrade the performance
of GNN for our problem. The novelty of SA-GNN relies on specially
designed components upon GNN to handle such limitations. To
address the first limitation, we propose a spatial oriented aggrega-
tion layer for SA-GNN; and for the second limitation, we devise a
spatial-dependency attentive propagation mechanism for SA-GNN.

Another important part of DeepR is the PKE model which can
distill the POI pairwise knowledge in HPIN for relationship pre-
diction into condensate representation vectors. After extracting
aspects from reviews, we build a relation-aware aspect graph con-
volutional network (RAConv) in HPIN to learn aspect embedding
and brand embedding of POIs. Then a cross attention mechanism
is designed to generate the aspect enhanced representation of POI
pairs. The intuition behind the cross attention is to build the tai-
lored representation of POI pairs with attention to the comparative
aspects between a pair of POIs.

Finally, we unify all the components into the DeepR for POI
competitive relationship prediction. To summarize, the main con-
tributions of our work are as follows:

• We first study the POI competitive relationship prediction prob-
lem with heterogeneous information including human behavior
data and POI review data. The POI competitive relationship pre-
diction has great potential for many applications.

• We propose a novel DeepR framework over a carefully designed
heterogeneous POI information network (HPIN). Several tech-
niques, such as SA-GNN, spatial oriented aggregation layer, spatial-
dependency attentive propagation and PKE model for knowledge
extraction, are invented to handle the unique properties of POIs
for competitive relationship prediction.

• Extensive experiments are conducted on two real-world datasets,
demonstrating the effectiveness of our proposed DeepR model.

2 RELATEDWORK
The research topic of this paper is closely related to the competitive
relationship mining, link prediction and graph neural networks. In
this section, we will briefly discuss them respectively.

Competitive Relationship Mining.Most of the existing stud-
ies aim at detecting the competitive relationship between companies
or products on text data. The early research [4, 7] applies predefined
linguistic patterns (i.e., A vs B) for mining competitors. A graphical
model in [25] is designed to extract product comparative relations
from reviews. The authors in [12] propose a network-based ap-
proach based on company citations (co-occurrence) graph in online
news articles. CMiner [17], which compares specific features on
user reviews, is useful for explaining the reasons for competition.
TFGM [26] learns from patent and twitter data to classify the rela-
tionships between entities by a topic model. All the above methods
cannot handle the unique features of POIs which have spatial con-
text and user behavior context factors. In a word, there are few
works on mining competitive relationship for Points of Interest.

Link Prediction. There are many methods for solving the link
prediction problem in different fields, including the statistical meth-
ods [8, 21] and graph embedding methods [2, 11, 15]. Some works
also study the link prediction on heterogeneous information net-
works by the auto-encoder model [20] and the meta path-based
methods [3]. Notice that the above methods mostly treat the rela-
tionship prediction as completing the missing links, with a strong
assumption that all the target links to predict are exactly in the
graph. However, our problem is not a link completion problem since
what we predict is the POI competitive relationship which does not
exist in HPIN. Therefore, the above methods lose their effectiveness.
Furthermore, they cannot consider additional information such as
spatial information and user behavior information.

Graph Neural Networks. Recently, many efforts have been de-
voted to study Graph Neural Networks (GNNs)[6, 14, 18, 19, 22, 31].
HAN[22] uses the hierarchical attention to aggregate feature infor-
mation through the predefinedmeta-paths in heterogeneous graphs.
There are also some works designed for link prediction [16, 30].
SEAL[30] predicts the general relationship on the graph based on
graph neural network and Weisfeiler-Lehman neural machine. The
above GNN-based models can only capture the topological struc-
ture features of the graph, but the necessary spatial information
and aspect information of POIs can not be handled by the existing
models. In recent years the GNN and graph embedding methods
have also been applied to solve spatio-temporal problems in spe-
cific applications [9, 10, 24, 32]. There are also some works about
so-called spatial-temporal graph neural network. However, these
spatial graph neural networks mainly refer to the message passing
process over the original “node” space (instead of graph spectral



space) which convolves the central node’s representation with its
neighbors’ representations to derive the updated representation for
the central node [23].

3 OVERVIEW
In this section, we first introduce the preliminaries, then we present
a framework overview to show the work process of the competitive
relationship prediction for POIs.

3.1 Preliminaries
Here we first provide some basic concepts used in our paper, fol-
lowing by a formal definition of our problem.

Definition 3.1. Heterogeneous POI Information Network.
The Heterogeneous POI Information Network (HPIN) is defined as
𝐺 = (P∪B∪A∪M,E𝑝𝑝∪E𝑝𝑏∪E𝑏𝑏∪E𝑏𝑎∪E𝑎𝑎), whereP,B,A,
andM are the sets of nodes in HPIN. In specific, P = {𝑝1, ..., 𝑝𝑛𝑝 }
denotes the set of POIs, B = {𝑏1, ..., 𝑏𝑛𝑏 } denotes the set of brands,
A = {𝑎1, ..., 𝑎𝑛𝑎 } denotes the set of aspects extracted from re-
views, and M = {M1, ...,M𝑛𝑀 } denotes the set of heat maps.
𝑛𝑝 , 𝑛𝑏 , 𝑛𝑎, 𝑛𝑀 are the number of POI, brand, aspect, spatial heat
map in HPIN. Each POI node 𝑝𝑖 is associated with a heat map to
represent the surrounding distribution feature of POI. E𝑝𝑝 , E𝑝𝑏 ,
E𝑏𝑏 ,E𝑏𝑎 andE𝑎𝑎 are five different sets of relational edges (POI-POI,
POI-brand, brand-brand, brand-aspect, and aspect-aspect) among
the three types of nodes. How to construct HPIN (including M) is
introduced in Section 4.

Definition 3.2. Meta-path for Brand. We define meta-path Φ

as a path with the form 𝑏𝑖

𝑅−1
𝑝𝑏

−→ 𝑝𝑘
𝑅𝑝𝑝
−→ 𝑝𝑙

𝑅𝑝𝑏
−→ 𝑏 𝑗 , which describes

a POI-based brand correlation between brand 𝑏𝑖 and brand 𝑏 𝑗 via a
path between POI 𝑝𝑘 and POI 𝑝𝑙 .

Taking Figure 2 for example, there are four POIs in the HPIN,
each POI belongs to a brand, denoted as an edge in E𝑝𝑏 , meaning
that a POI is one branch of its brand (i.e., 𝑝2 is one branch of
KFC). In addition, the attributes of POI include its category (i.e.,
the category of 𝑝2 is the fast-food restaurant) and coordinate. The
relation between POIs is based on the user map search query. For
example, 𝑝1 is linked with 𝑝2 in HPIN because they are always
queried together by users on the online map. The relation between
brands is defined based on meta-path Φ. In Figure 2(c), the edge
𝑏2𝑏3 is constructed by the path 𝑏2 → 𝑝2 → 𝑝3 → 𝑏3. Each brand
is also associated with several aspects. 𝑏3 (Mcdonald’s) is closely
related to 𝑎2 (French Fries) and 𝑎3 (hamburger). The two aspects
𝑎2 and 𝑎3 often appear together in the user reviews so they are
connected with each other.

Definition 3.3. Competitive Relationship Prediction. The ob-
jective of our problem is to associate each POI pair (𝑝𝑖 , 𝑝 𝑗 ) with a
label 𝑦 ∈ {0, 1} where 𝑦 = 1 indicates 𝑝𝑖 and 𝑝 𝑗 have a competitive
relationship. Formally, given a set of POIs P and an HPIN 𝐺 , the
goal is to learn a predictive function 𝑓 : (P ×P |𝐺) → 𝑌 to predict
the competitive relationship between POIs.

3.2 Framework Overview
Figure 1 shows an overview of the POI competitive relationship
analysis process. First, we construct a HPIN from map query data

Map 
query data

User
review data

POI 
attributes

HPIN
(Heterogeneous
POI Information

Network)

DeepR Learning
Framework

competitive
relationship

POI graph

Aspect graph

Figure 1: An overview of the POI competitive relationship
analysis process.

and user review data with POI attributes. Then we input the aspect
graph and POI graph extracted from the HPIN to the proposed
DeepR model, and the outputs indicate whether the given POI pairs
have competitive relationships.

Figure 3 presents the whole framework of DeepR, which consists
of two main components: Spatial Adaptive Graph Neural Network
(SA-GNN) Learning and Pairwise POI Knowledge Extraction (PKE).
First, SA-GNN aggregates the neighbors on the POI graph with
integrating the spatial information via the spatial oriented aggre-
gation layer, and then attentively propagates the distant-range
dependencies with spatial locations. Next, SA-GNN is applied to
two sub-graphs (Diffusion and Affinity Graph) of the POI graph to
capture the hidden patterns indicated by category information on
the POI graph. Second, PKE adopts the relation-aware aspect graph
convolution (RAConv) to encode the brand and aspect on the aspect
graph. Then PKE employs the cross attention mechanism to distill
the pairwise POI knowledge from aspects, which is combined with
the POI pair representation next. Finally, the pairwise prediction
part outputs the result of the competition. In the following two sec-
tions, we first introduce the construction of HPIN, then we present
our DeepR framework.

4 HPIN CONSTRUCTION
In this section, we describe how to construct the HPIN with an
example of HPIN shown in Figure 2. We first introduce the method
of constructing spatial heat maps linked with POIs. Then we discuss
the process of building different relations in HPIN. The relation of
POI-brand is given by the attributes of POI, as illustrated in Table
2 in appendix, showing which brand every POI belongs to. We
mainly introduce the POI relation (POI-POI), and the relations of
aspect and brand (brand-aspect, aspect-aspect and brand-brand).

4.1 Spatial Heat Map Construction
As illustrated in Figure 2(a), M = {M1, ...,M𝑛𝑀 } is a set of grid
spatial heat maps that are linked with POIs to represent the sur-
rounding environment features. Each element M𝑖 of M corre-
sponds to a spatial heat matrix 𝑴𝑖 ∈ R𝐶×𝐿×𝐿 , where 𝐶 is the
number of category-based channels and 𝐿 is the side length of the
matrix. We split a city into the same size grids (i.e., 500m×500m).
Each grid 𝑆𝑘 has𝐶 channels respecting to the number of categories
of POIs, which can be denoted as {v1

𝑘
, ..., v𝐶

𝑘
}. The value of v𝑐

𝑘
is

calculated with max-pooling method:

v𝑐
𝑘
= max∀𝑝𝑡 ∈𝑆𝑘

{
𝑓ℎ𝑜𝑡 (𝑝𝑡 ) | tag(𝑝𝑡 ) = 𝑐, 1 ≤ 𝑐 ≤ 𝐶

}
, (1)



where tag(𝑝𝑡 ) = 𝑐 limits 𝑝𝑡 has a category of 𝑐 , and 𝑓ℎ𝑜𝑡 returns
the hot value of 𝑝𝑡 , which is total times of 𝑝𝑡 being searched by
users recorded on map search query data in a time interval. We
treat one central grid of each POI with its neighbors as 𝐿 × 𝐿 grids
to constitute the spatial heat map.

4.2 POI Relation Construction
POI co-query edge in E𝑝𝑝 is a type of behavior-driven relation-
ship. Here we use map search query data which records users’
actions on POIs on an online map service platform to construct
the behavior-driven relationship. It is also possible to use other
similar user behavior data. Intuitively the more frequently a pair of
POIs (𝑝𝑖 , 𝑝 𝑗 ) are queried by the same users in a short time interval
Δ𝑡 , the more likely they are related to each other. Each POI-POI
edge (𝑝𝑖 , 𝑝 𝑗 ,𝑤𝑞𝑖 𝑗 ) ∈ E𝑝𝑝 means that 𝑝𝑖 and 𝑝 𝑗 are queried𝑤

𝑞

𝑖 𝑗
times

together by all users in a period of time. We use A𝑞 to denote the
adjacency matrix of the POI co-query, and (A𝑞)𝑖 𝑗 = (A𝑞)𝑗𝑖 = 𝑤𝑞𝑖 𝑗 .
To reduce noise disturbance and reduce the size of the co-query
graph, we set a threshold 𝜃𝑚 to filter edges that satisfy𝑤𝑞

𝑖 𝑗
< 𝜃𝑚 .

We also name the graph formed by POIs and edges E𝑝𝑝 as POI
co-query graph.

The POI co-query graph can also be divided into two sub-graphs:
a diffusion graph and an affinity graph. If a pair of POIs with the
same category are searched many times, they tend to be competitive
since users may make a choice between them; if ones with different
categories are searched many times, they tend to be complementary
(instead of competitive) since users may plan to visit both of them.
Due to the difference of behavior semantics, we build a diffusion
graph on the same category of POIs, and an affinity graph on the
different categories of POIs. As introduced later, SA-GNN will be
applied to the diffusion graph and the affinity graph separately.

4.3 Aspect and Brand Relation Construction
Aspect set A is extracted from reviews data. We first gather all
user reviews of a brand to format a document. The reasons to
gather reviews to brands instead of POIs are: 1) the reviews of
a certain POI are usually rare; 2) most users give reviews about
the brand (like “KFC”) instead of a certain store. If a POI does
not have a brand, we use its name as a brand. We treat brands
as documents and aspects as the key words of documents. Then
we calculate words’ term frequency-inverse document frequency
(TF-IDF), and we select the top 𝑘 words as aspects in aspect set,
denoted as 𝑎 𝑗 ∈ A. In this way, brand-aspect relation can also be
built, (𝑏𝑖 , 𝑎 𝑗 ,𝑤𝑡𝑖 𝑗 ) ∈ E𝑏𝑎 means that 𝑎 𝑗 is one of the top 𝑘 aspects
of 𝑏𝑖 and edge weight𝑤𝑡

𝑖 𝑗
is the TF-IDF value. We use (A𝑡 )𝑖 𝑗 = 𝑤𝑡𝑖 𝑗

to denote the adjacency matrix of E𝑏𝑎 . We also employ point-wise
mutual information (PMI) to establish linkages between aspects
[27]. Thus, we have 𝑃𝑀𝐼 (𝑖, 𝑗) = 𝑤𝑎

𝑖 𝑗
to measure the relevance of

aspects (𝑎𝑖 , 𝑎 𝑗 ), denoted as (𝑎𝑖 , 𝑎 𝑗 ,𝑤𝑎𝑖 𝑗 ) ∈ E𝑎𝑎 , and (Aa)𝑖 𝑗 = 𝑤𝑎𝑖 𝑗 .
We filter out aspect pairs whose PMI is lower than a threshold 𝜃𝑃𝑀𝐼 .

In addition, there is an edge between brands too. We count the
number of path Φ from 𝑏𝑖 to 𝑏 𝑗 and normalize the result:

𝑠 (𝑏𝑖 , 𝑏 𝑗 ) = 𝑠 (𝑏 𝑗 , 𝑏𝑖 ) =

��{𝒑𝑏𝑖⇝𝑏 𝑗 : 𝒑𝑏𝑖⇝𝑏 𝑗 |= Φ}
��√��N (𝑝𝑏)

𝑖

�� ·√��N (𝑝𝑏)
𝑗

�� , (2)

! Spatial heat map "# ∈
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Figure 2: An illustrative example of HPIN. (a) Spatial heat
map of several category-based channels (i.e., hotel, restau-
rant, shopping center, house). (b) POI set. (c) Brand (i.e., KFC,
Mcdonald’s, Starbucks) set. (d) Aspect (i.e., coffee, French
Fries, hamburger) set.

where |= means path 𝒑𝑏𝑖⇝𝑏 𝑗 follows the rule defined by meta-path
Φ, and

��N (𝑝𝑏)
𝑖

�� denotes the number of POIs belonging to brand 𝑏𝑖 .
Formally, edges of brands are (𝑏𝑖 , 𝑏 𝑗 ,𝑤𝑏𝑖 𝑗 = 𝑠 (𝑏𝑖 , 𝑏 𝑗 )) ∈ E𝑏𝑏 , and
adjacency matrix as (A𝑏 )𝑖 𝑗 = 𝑤𝑏𝑖 𝑗 .

5 DEEPR FRAMEWORK
In this section, we present our DeepR framework whose architec-
ture is illustrated in Figure 3. We first introduce two important
components of DeepR, which are spatial adaptive graph neural net-
work (SA-GNN) learning component and pairwise POI knowledge
extraction model (PKE). Then we apply a pairwise output layer to
predict the competitive probability given a pair of POIs.

5.1 Spatial Adaptive Graph Neural Network
Though graph neural networks have been widely studied in many
applications and show great advantages in the general graph learn-
ing problem, these message-passing neural networks (MPNNs),
such as GCN [6] and HAN [22], still have fundamental weaknesses
in several respects [14], especially in our POI graph learning prob-
lem. Firstly, the aggregation of MPNNs treats all neighbors of POIs
equally in direction and loses the spatial information of POIs and
their neighbors. Secondly, spatial distance dependencies are ne-
glected, causing the lack of the ability to capture distant-range
spatial location dependencies.
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For example, as shown in Figure 4, McDonald’s has three neigh-
bors on the POI graph. In Figure 4(a), three neighbor POIs relatively
evenly distributed around McDonald’s. In this case, three POIs
probably have the same effect on McDonald’s from the point of
the spatial distribution. In Figure 4(b), KFC is located on one side
of McDonald’s, while Burger King and Pizza Hut are on another
side. What’s more, compared to Burger King and Pizza Hut, KFC is
much closer to McDonald’s in distance. Thus McDonald’s should
pay more attention to KFC than that to Burger King and Pizza Hut,
because people who live on the side of KFC are more likely to make
a choice between KFC and McDonald’s. But MPNNs can not tell
the difference between Figure 4(a) and Figure 4(b).

To overcome the above two limitations of traditional GNNs based
onmessage-passing, as shown in Figure 3(d), we design the SA-GNN
to process both the user behavior context and the spatial context
of POI in HPIN with considering spatial location relation on the

co-query graph and spatial distribution of POIs. SA-GNN is com-
posed of spatial oriented aggregation layer and spatial-dependency
attentive propagation layer.

5.1.1 Spatial Oriented Aggregation Layer. To overcome the first
limitation and aggregate POI neighbors on the co-query graph
spatially, we adopt a graph convolutional layer to learn POI rep-
resentations by considering spatial location relation, as illustrated
in Figure 4(c). We first evenly divide the neighbors of each POI
node 𝑝𝑖 into several sectors (e.g., six sectors) 𝑆1, ..., 𝑆𝑛 according
to their location coordinates. Each POI in the sector 𝑆𝑘 belongs
to the same spatial neighbor set of 𝑝𝑖 , denoted as N𝑘 (𝑝𝑖 ). POIs
in the same sector 𝑆𝑘 are associated with the spatial relationship
𝑠𝑟𝑘 . Notice that 𝑝𝑖 itself does not belong to any sector 𝑆1 ∼ 𝑆𝑛 , so
we define the central node 𝑝𝑖 in the sector 𝑆0 with neighbor set
N0 (𝑝𝑖 ) = {𝑝𝑖 }. Then we use the same graph convolutional rule
based on symmetric normalized Laplacian as GCN [6] to aggregate
POIs of the relationship 𝑠𝑟𝑘 locally in the sector 𝑆𝑘 :

𝒔𝑘𝑖 =
∑

𝑝 𝑗 ∈N𝑘 (𝑝𝑖 )
(deg(𝑝𝑖 )deg(𝑝 𝑗 ))−

1
2 𝒙 𝑗 , (3)

where deg(𝑝𝑖 ) is the degree of node 𝑝𝑖 in co-query graph. Then
we aggregate the representations of different sectors for each POI:

𝒒𝑖 = 𝜎 (𝑾𝑞 ·
𝑛

| |
𝑘=0

𝒔𝑘𝑖 ), (4)

where 𝜎 is the non-linear activation function,𝑾𝑞 is the transform
matrix and we use concatenation operator | | as the global oriented
aggregation function. In this spatial oriented aggregation way, SA-
GNN can distinguish the POI neighbors from different sectors and
integrate spatial information.

5.1.2 Spatial-dependency Attentive Propagation Layer. To over-
come the second limitation and capture distant-range dependencies,
we propose a spatial attentive propagation layer to handle the spa-
tial information with two techniques. First, we design a heat map



convolution layer to model the surrounding environment of POIs
to capture the spatial distribution feature. For a target POI 𝑝𝑖 , we
input its spatial heat map matrix in HPIN, denoted as𝑴𝑖 , into CNN
operation and learn the distant-range dependencies feature 𝒎𝑖 :

𝒎𝑖 = 𝑓𝐶𝑁𝑁
(
𝑴𝑖 ;𝒘ℎ

)
, (5)

Then we concatenate 𝒎𝑖 and 𝒒𝑖 to learn POI representation
feature:

𝒉𝑖 = CONV(𝑝𝑖 ) = 𝜎
(
𝒒𝑖 ⊕ 𝒎𝑖

)
, (6)

Second, we invent a location-aware attentive propagation layer
to process the relative spatial positions between POIs. Although
the spatial oriented aggregation layer can capture POI spatial infor-
mation of different sectors, the spatial distance factor between POIs
is overlooked. As illustrated in Figure 4, the nearer a neighbor POI
is to another POI, the more possible they are competitive, which
means this POI deserves higher attention in the model. Besides, the
relative spatial location in two-dimensional space is also influential.
To overcome this problem, we propose a location-aware attention
mechanism to propagate POI representation feature:

𝒑𝑖 =
∑
𝑗 ∈N𝑖

𝑎𝑡𝑡𝑛𝑠 (𝑝𝑖 , 𝑝 𝑗 , 𝒓𝑠 )𝑾𝑝 · CONV(𝑝 𝑗 ), (7)

where 𝑎𝑡𝑡𝑛𝑠 (𝑝𝑖 , 𝑝 𝑗 , 𝒓𝑠 ) is the location-aware attentive weight of
each neighbor 𝑝 𝑗 for 𝑝𝑖 with their relative spatial location feature
𝒓𝑠 .𝑾𝑝 is a transform matrix.

As shown in Figure 5, We define two one-hot vectors 𝒂𝑥 (𝑝𝑖 , 𝑝 𝑗 )
and 𝒂𝑦 (𝑝𝑖 , 𝑝 𝑗 ), which represent the relative position in longitude
and latitude dimensions. For each dimension, we take the 𝑝𝑖 as
the origin of coordinates and divide the distance between 𝑝𝑖 and
𝑝 𝑗 in two dimensions into buckets (in our experiment, we set the
bucket as 100 meters, and the maximum distance in each dimen-
sion is 10km). Then we concatenate two embeddings 𝒆𝑥 (𝑖, 𝑗) =

𝑾𝑥𝒂𝑥 (𝑝𝑖 , 𝑝 𝑗 ) and 𝒆𝑦 (𝑖, 𝑗) = 𝑾𝑦𝒂𝑦 (𝑝𝑖 , 𝑝 𝑗 ), and we apply a dense
layer transformation:

𝒓𝑠 =𝑾𝑠 ·
(
𝒆𝑥 (𝑖, 𝑗) ⊕ 𝒆𝑦 (𝑖, 𝑗)

)
, (8)

Next, We implement location-aware attention 𝑎𝑡𝑡𝑛𝑠 , which is
formulated as shown:

𝑎𝑡𝑡𝑛𝑠 (𝑝𝑖 , 𝑝 𝑗 , 𝒓𝑠 ) = 𝜎
(
𝒂𝑇 · (𝑾𝑡 𝒉𝑖 ⊕𝑾𝑡 𝒉 𝑗 ⊕ 𝒓𝑠 )

)
, (9)

Finally, as suggested in GAT [18], multi-head attention is used
to enhance learning ability during propagation. We concatenate
𝐾 embeddings learned by K independent location-aware attention
mechanisms to represent final aggregation embedding:

𝒑𝑖 =

�����
�����𝐾
𝑘=1

𝜎
©­«
∑
𝑗 ∈N𝑖

𝑎𝑡𝑡𝑛𝑘𝑠 (𝑝𝑖 , 𝑝 𝑗 , 𝒓𝑠 )𝑾𝑘
𝑝 · CONV(𝑝 𝑗 )

ª®¬ .
5.1.3 Learning on Diffusion and Affinity Graphs. We further apply
SA-GNN on the two sub-graphs deriving from co-query graph. As
we have stated, on co-query graph, there are two sub-graphs which
are diffusion graph and affinity graph. The diffusion graph is based
on POIs with the same category (which tend to be competitive since
users may make a choice among them), and the affinity graph is
based on POIs with different categories (which are complementary
instead of competitive since users may plan to visit all of them). Due
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Figure 5: Relative spatial location feature of 𝑝1 and 𝑝2

to the different behavior semantics behind this view, we apply SA-
GNN operation to these two different graphs separately, denoted as
𝒑𝑑
𝑖
and 𝒑𝑎

𝑖
, and concatenate two types of representations to output

final POI 𝑝𝑖 representation feature:

𝒑𝑖 = 𝒑𝑑𝑖 ⊕ 𝒑𝑎𝑖 , (10)

5.2 Pairwise POI Knowledge Extraction
DeepR also utilizes the aspect information and brand information of
POI in HPIN to help competitive relationship prediction. Formally,
Given a pair of POIs into DeepR, (Note that one POI in HPIN, e.g.,
“KFC in West Court”, corresponds to one brand, e.g., “KFC”), we
can fetch a pair of brand embeddings, denoted as 𝒃𝑖 and 𝒃 𝑗 . Such
embedding features can be used to enhance the POIs for relationship
prediction. To meet it, as shown in Figure 3(b), we present the other
component of DeepR: Pairwise POI Knowledge Extraction (PKE),
which consists of relation-aware aspect convolution (RAConv) and
cross attention layer. In this section, We discuss how to generate
the embeddings of brands and aspects, and then distill the pairwise
POI knowledge about the aspect for each POI pair from HPIN.

5.2.1 Relation-aware Aspect Convolution. Inspired from Text GCN
[27] and R-GCN [16], we propose relation-aware aspect convolution
(RAConv) to learn brand and aspect embeddings which can dis-
tinguish three relations of brand and aspect (brand-brand relation,
aspect-aspect relation and brand-aspect relation). For each brand
and aspect, we use relation-aware graph convolution operation to
aggregate all related neighbor brands and aspects:

𝐴𝐺𝐺 (𝒂 (𝑙)
𝑖

) =
∑
𝑗 ∈N𝑎

𝑖

(Â𝑎)𝑖 𝑗𝑾𝑎𝒂 (𝑙−1)𝑗
+

∑
𝑗 ∈N𝑡

𝑖

(Â𝑡 )𝑖 𝑗𝑾𝑡𝒃 (𝑙−1)𝑗
,

𝒂 (𝑙)
𝑖

= 𝜎

(
𝑾𝒂 (𝑙−1)

𝑖
+𝐴𝐺𝐺 (𝒂 (𝑙)

𝑖
)
)
, (11)

𝐴𝐺𝐺 (𝒃 (𝑙)
𝑖

) =
∑
𝑗 ∈N𝑏

𝑖

(Â𝑏 )𝑖 𝑗𝑾𝑏𝒃
(𝑙−1)
𝑗

+
∑
𝑗 ∈N𝑡

𝑖

(Â𝑡 )𝑖 𝑗𝑾𝑡𝒂 (𝑙−1)𝑗
,

𝒃 (𝑙)
𝑖

= 𝜎

(
𝑾𝒃 (𝑙−1)

𝑖
+𝐴𝐺𝐺 (𝒃 (𝑙)

𝑖
)
)
, (12)

where the function 𝐴𝐺𝐺 denotes that each aspect 𝒂𝑖 or brand 𝒃𝑖
aggregates the influences from its related brands and aspects; 𝒂𝑖
represents aspect embedding and 𝒃𝑖 represents brand embedding;
Â𝑎 = D̃

− 1
2

𝑎 Ã𝑎D̃
− 1

2
𝑎 , Ã𝑎 = A𝑎 + I𝑁 (Â𝑏 , Â𝑡 in the same way);N𝑎

𝑖
,N𝑏

𝑖

andN𝑡
𝑖
denote the neighbor indices set of node 𝑖 in three relations;

Here 𝜎 is a non-linear activation; 𝑾 , 𝑾𝑎 , 𝑾𝑏 and 𝑾𝑡 are weight
matrices of different relations.



5.2.2 Cross Attention. Given a pair of brand embeddings generated
by the above RAConv, denoted as 𝒃𝑖 and 𝒃 𝑗 , there are two lists of
aspect embeddings, denoted as {𝒂𝑖1, ..., 𝒂

𝑖
𝑚} and {𝒂 𝑗1, ..., 𝒂

𝑗
𝑛}. Then

we feed the embeddings into the cross attention layer to mutually
generate attentive weights. We first calculate the similarity between
brand𝑏𝑖 and each aspect𝑎 𝑗𝑙 of brand𝑏 𝑗 , denoted as𝝅 (𝑏𝑖 , 𝑎 𝑗𝑙 ), aiming
to pick up the important aspects and de-emphasize the noisy aspects
of another brand 𝑏 𝑗 (and 𝝅 (𝑏 𝑗 , 𝑎𝑖𝑘 ) is the same):

𝝅 (𝑏𝑖 , 𝑎 𝑗𝑙 ) =
𝒃𝑖 · 𝒂 𝑗𝑙

∥𝒃𝑖 ∥ · ∥𝒂 𝑗𝑙 ∥
, 𝑙 ∈ [1, 𝑛] (13)

Then softmax function is used to obtain each other’s normalized
attentive weights of aspects, and the aspect enhanced feature vector
𝒂𝑖 for POI 𝑝𝑖 can be computed as the weighted sum of brand 𝑏𝑖 ’s
aspect 𝑎𝑖

𝑘
:

𝒂𝑖 =
𝑚∑
𝑘=1

𝛽𝑘𝒂
𝑖
𝑘
, (14)

𝛽𝑘 =
exp(𝝅 (𝑏 𝑗 , 𝑎𝑖𝑘 ))∑𝑚
𝑡=1 exp(𝝅 (𝑏 𝑗 , 𝑎𝑖𝑡 ))

, (15)

Definition 5.1. Pairwise Average Dense Operation.We define
a pairwise average dense operation 𝒈𝑠 to overcome the asymmetry
of concatenation two vectors 𝒆1 and 𝒆2 directly:

𝒈𝑠 (𝒆1, 𝒆2) = average
(
𝑾𝑔 (𝒆1 ⊕ 𝒆2),𝑾𝑔 (𝒆2 ⊕ 𝒆1)

)
, (16)

Given a pair of POIs, we input 𝒂𝑖 and 𝒂 𝑗 into 𝒈𝑠 to output final
pairwise aspect representation 𝒂𝑖, 𝑗 :

𝒂𝑖, 𝑗 = 𝒈𝑠 (𝒂𝑖 , 𝒂 𝑗 ). (17)

5.3 Prediction and Optimization
For a pair of POIs 𝑝𝑖 , 𝑝 𝑗 , DeepR encodes 𝑝𝑖 , 𝑝 𝑗 separately by SA-
GNN layer and outputs their representation features, denoted as 𝒑𝑖
and 𝒑 𝑗 . After pairwise POI knowledge extraction, 𝒂𝑖, 𝑗 represents
the pairwise aspect context feature of 𝑝𝑖 and 𝑝 𝑗 .

5.3.1 Pairwise Interaction. Pairwise interaction layer combines
POI representation feature of 𝑝𝑖 , 𝑝 𝑗 and outputs POI pair feature
for competitive relationship prediction:

𝒑𝑖, 𝑗 =𝑾𝑡 ·
(
𝒈𝑠 (𝒑𝑎𝑖 ,𝒑

𝑎
𝑗 ) ⊕ 𝒈𝑠 (𝒑𝑑𝑖 ,𝒑

𝑑
𝑗 )
)
, (18)

where𝑾𝑡 is the weight matrix, and 𝒑𝑑
𝑖
,𝒑𝑎
𝑖
are two POI representa-

tions of diffusion graph and affinity graph.

5.3.2 Prediction. Finally, the probability of a pair of POIs compet-
ing with each other is predicted by a fully connected layer with
concatenating POI representation feature 𝒑𝑖, 𝑗 and aspect context
feature 𝒂𝑖, 𝑗 . Then we have:

𝑦𝑖, 𝑗 = sigmoid(𝑾𝑜 · (𝒑𝑖, 𝑗 ⊕ 𝒂𝑖, 𝑗 )), (19)

5.3.3 Optimization. We adopt the Cross-Entropy loss function to
train DeepR over all labeled POI pairs between the ground-truth
and the prediction:

L =
∑

(𝑝𝑖 ,𝑝 𝑗 ) ∈D

(
𝑦𝑖, 𝑗 𝑙𝑜𝑔𝑦𝑖, 𝑗 + (1 − 𝑦𝑖, 𝑗 )𝑙𝑜𝑔(1 − 𝑦𝑖, 𝑗 )

)
, (20)

where D is the ground-truth set and includes positive and negative
labels of the competitive relationship. 𝑦𝑖, 𝑗 is the label of the pair
(𝑝𝑖 , 𝑝 𝑗 ) and 𝑦𝑖, 𝑗 is the prediction result of DeepR.

6 EXPERIMENTS
In this section, we first introduce the experiment settings, and then
demonstrate the effectiveness of DeepR on two city-level datasets.

6.1 Experiment Settings
6.1.1 Dataset. Experiments are conducted on two real-world POIs
datasets in Beijing and Chengdu. To construct the HPIN, we use
the map search query data and POI data in the corresponding cities
from 1st August 2018 to 31st August 2018. The dataset is a portion of
the whole data of Beijing and Chengdu randomly sampled from
the data of Baidu Maps. We extract 3,231 aspects from reviews. And
there are 113,997 links of aspect-aspect relation, 33,098 links of
brand-brand relation and 207,917 links of brand-aspect relation.The
construction of ground-truth is introduced in Appendix A.1.

6.1.2 Baselines and Evaluation Metrics. We use five kinds of base-
lines including the simple rule-based methods (DIST and EW),
feature-based methods (MLP and XGboost[1]), graph embedding
methods (Deepwalk[15] and Node2vec[2]), several state-of-the-
art GNN models (GCN[6], GAT [18], SEAL[30], Geom-GCN[14])
and state-of-the-art GNN over heterogeneous information network(
HAN[22]). The detail of baselines is introduced in Appendix A.2.
We use Accuracy (Acc), Area Under Curve (AUC), Precision (Prec),
Recall (Rec) and F1-score (F1) as the evaluation metrics.

6.2 Performance Evaluation
6.2.1 Overall Comparison. Table 1 shows the performance results
of our proposed DeepR as compared to all the baselines on Bei-
jing and Chengdu datasets. As we can see, DeepR significantly
outperforms all the baselines in almost all metrics.

Specifically, we can observe that the prediction results of the rule-
based methods (DIST, EW) are very poor, especially the accuracy is
only around 60%, demonstrating that we cannot simply use distance
or co-query weight to make predictions. Furthermore, feature-based
models (MLP, XGBoost) are also not ideal compared to DeepR due
to the lack of the incorporation of the co-query graph structure
information. For graph embedding models (Deepwalk, Node2vec),
they can learn the structure features of the POI co-query graph. As a
result, they achieve better performances compared with the feature-
based models. But the accuracy is still not high, because these
graph embedding models fail to capture effective neighborhood
information as graph neural networks.

For graph neural networks, GCN and GAT outperform relatively
better than graph embedding baseline methods, which indicates the
powerful ability of GNN to capture the graph information with POI
features. The performance of Geom-GCN is not significantly better
than GCN and GAT, the potential reason is that neighborhood
graph structure and latent dependency in graph are not essential
for competitive relationship prediction on our datasets. We notice
that the result of SEAL is not as good as other GNNmodels, because
the POI graph is much sparser than general graphs and SEAL has
the limited effect to learn the subgraph pattern for link prediction.
Since HAN can learn the heterogeneous information compared to



Table 1: Experimental results on Beijing and Chengdu dataset.

Beijing Chengdu
Acc AUC F1 Prec Rec Acc AUC F1 Prec Rec

EW 0.5765 0.6225 / / / 0.5667 0.6133 / / /
DIST 0.6442 0.7131 / / / 0.6257 0.6963 / / /
MLP 0.7221 0.8102 0.7389 0.6968 0.7863 0.6883 0.7476 0.7117 0.6621 0.7694

XGboost 0.7814 0.8641 0.7915 0.7566 0.8298 0.7300 0.8090 0.7353 0.7211 0.7500
Deepwalk 0.7732 0.8511 0.7811 0.7549 0.8511 0.7397 0.8158 0.7485 0.7241 0.7745
Node2vec 0.7784 0.8527 0.7866 0.7586 0.8167 0.7411 0.8151 0.7518 0.7291 0.7759
GCN 0.8061 0.8790 0.8139 0.7826 0.8477 0.7534 0.8394 0.7569 0.7463 0.7677
GAT 0.8069 0.8828 0.8077 0.8046 0.8108 0.7581 0.8281 0.7542 0.7669 0.7418

Geom-GCN 0.8091 0.8835 0.8045 0.8071 0.802 0.7527 0.8309 0.7447 0.7697 0.7213
SEAL 0.8023 0.8813 0.8094 0.7814 0.8396 0.7489 0.8418 0.7505 0.7455 0.7557
HAN 0.8145 0.8893 0.8175 0.8046 0.8308 0.7633 0.8424 0.7656 0.7556 0.7758
DeepR 0.8516 0.9129 0.8509 0.8546 0.8472 0.7876 0.8566 0.7884 0.7857 0.7911

ACC AUC F1
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Figure 6: Evaluation of DeepR with its variants on the Bei-
jing and Chengdu dataset.

the above GNN models, it achieves the best performance among
all the baselines. However, HAN is not capable of capturing the
spatial features of POI and the aspect features well. DeepR can learn
multi-context information effectively from the HPIN. Therefore, as
shown in Table 1, the performance of DeepR is improved greatly,
where the ACC of DeepR is higher than Geom-GCN by 5.25% and
HAN by 4.52% on the Beijing dataset.

6.2.2 How Spatial Factor Helps. To study how spatial factor helps
with the prediction, we design different variants of DeepR:

• DeepR-C: It uses the co-query graph information without
heat map based CNN to learn spatial distribution.

• DeepR-L: Location-aware attention mechanism is removed.
• DeepR-S: It drops spatial oriented aggregation in SA-GNN.
• DeepR-P: There is no spatial-dependency attentive propa-
gation in SA-GNN.

As we can see in Figure 6(a) and 6(c), DeepR can outperform
all other variants of DeepR-C, DeepR-L, DeepR-S, and DeepR-P
on two datasets. It demonstrates the effectiveness of our proposed
model to handle the spatial information. Specifically, our proposed
model outperforms DeepR-C, which shows the effectiveness of
considering spatial distant-range dependencies in the heat map.
The performance of DeepR-L is poor obviously on all three met-
rics, showing that the spatial information for attentive propagation
is significant. Furthermore, if we remove the spatial oriented ag-
gregation (DeepR-S) or spatial-dependency attentive propagation
completely (DeepR-P), results get worse greatly, which indicates
the necessity of the SA-GNN to overcome the limitations of the
general message-passing GNNs in the POI graph learning problem.

6.2.3 How Aspect Context Helps. We further study how the aspect
context can help to predict the competitive relationship effectively.
We conduct experiments on variants:

• DeepR-CA: Cross attention layer of PKE is removed.
• DeepR-A:The PKE component in DeepR is removed.

Figure 6(b) and 6(d) show that removing aspect context learning
component results in the accuracy decreased by 2.6%, which justifies
the importance of aspect information. Moreover, DeepR-CA gets
worse performance than the proposed model, because noisy aspects
can disturb prediction results without cross attention.

6.2.4 Hyper-parameters Sensitivity. We also conduct two experi-
ments to study how parameter 𝑘 and 𝑠𝑙 influence DeepR’s perfor-
mance. As illustrated in Figure 7, when the number of aspects 𝑘
increases from 0 to 20, there are noticeable improvements on all
metrics. But when 𝑘 ≥ 10, results don’t change much. It is because
that the top aspects (i.e., top 10) sorted by TF-IDF are more im-
portant and the low-ranking aspects are relatively less semantic
for prediction. Figure 7 shows the scores increase slowly at the
beginning and become relatively stable when the size of the grid is
larger than 400𝑚 × 400𝑚. With the increase of the grid size, on the
one hand, POIs in a grid can capture more distant Euclidean spatial
information, while on the other hand, this information from the
bigger granularity is not always good. As a result, the performance
achieves an equilibrium when 𝑠𝑙 ≥ 400.
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Figure 7: Sensitivity analysis on two datasets.

7 CONCLUSION
In this paper, we study the competitive analysis problem for POIs
which is valuable on the commercial front. We construct a heteroge-
neous POI information network and propose the DeepR framework
to discover the competitors of POIs. Moreover, spatial adaptive
graph neural network is designed in DeepR, aiming at overcoming
the limitations of message-passing GNNs. Meanwhile, the proposed
model utilizes the pairwise POI knowledge extracted from reviews
to improve the performance. Extensive experimental results on two
real-world datasets show that DeepR significantly outperforms all
baselines for POI competitive relationship prediction.
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A APPENDIX
A.1 Additional Dataset Description
Here we introduce how to construct ground truth. Table 2 shows
the instruction of the main attributes of POI we used in our work.
At first, for each brand, we collected its related brand (i.e. KFC and
Mcdonald’s) from a public knowledge base zhishi.me [13] which
has a “relatedPage” relation. For all POI pairs between two related
brands, we use the following conditions to pick up POI pairs with
competitive relationship: 1) The distance between two POIs should
be within 10 km; ) They have the same category; 3) The overlap of
the checked-in users of two POIs in July 2018 is larger than 5%.

In total, the Beijing dataset contains 18,731 pairs and the Chengdu
dataset contains 7,514 pairs. We manually check 200 pairs randomly
selected from the ground truth, and find that the accuracy is larger
than 95%. We generate the same number of negative POI pairs with
the same category for each city by randomly sampling while also
limiting their distances within 10 km, and we also control that
the distribution of POIs in each category is consistent with the
distribution of positive samples.

A.2 Baseline Description
We compare our DeepR model with the following methods to pre-
dict the competitive relationship of POIs:

• DIST (distance rule) and EW (edge weight rule) are two sim-
ple methods. We set the best threshold to determine whether
POI pairs are competitive or not. For these baselines, if the
distance (w.r.t. DIST) or edge weight (w.r.t EW) of the POI
pairs with the same category is smaller than a pre-defined
threshold, they are considered to be competitive.

• MLP and XGBoost[1]. We concatenate POI features (i.e.,
category and coordinate) of a pair of POIs and correlation
features (i.e., distance and co-query weight) as input to pre-
dict competitive relationship by MLP and XGBoost.

• Deepwalk[15] and Node2vec[2]. We use graph embedding
methods to learn POI’s embedding on co-query graph, and
then apply an MLP classifier to predict.

• GCN[6]. It is a kind of graph neural network, which ag-
gregates node features on graph. Here we use POI features
and the average vector of aspect embeddings learned from
word2vec as the input feature of each node, and GCN is
conducted on co-query graph.

• GAT[18]. This model is also a graph neural network consid-
ering the attention mechanism to learn appropriate weights
of neighbor nodes. Here the input is the same as GCN.

• Geom-GCN[14]. Geom-GCN is based on a geometric aggre-
gation scheme for graph neural networks. Here we build the
model on the co-query POI graph, and the input feature is
the same as GCN.

• SEAL[30]. It is a state-of-art graph neural network for link
prediction. Here we feed it with the subgraph extracted from
the link, and the input feature has three components: struc-
tural POI labels, POI embeddings and POI attributes.

• HAN[22]. HAN is a state-of-art heterogeneous graph neural
network, which employs node-level attention and semantic-
level attention. Here we construct three meta-paths (PP, PBP,

Table 2: The main attributes of POI we used in our work.

Attribute Description
Name The name of POI.
Category Standard two-level category.
Brand Brand information of POI.
Point x The x-coordinate of POI on the map.
Point y The y-coordinate of POI on the map.

PBABP) for HAN to learn POI representations to predict the
competitive relationship.

A.3 Experiment Setup
A.3.1 Data Splitting. In the experiment, we randomly pick 10% of
data for the test and 10% of data as the validation set while limiting
their corresponding brand pairs not appearing in the remaining
80% train set in order to avoid information leakage.

A.3.2 Parameter Settings. For DeepR, we set the embedding size
of each node in HPIN as 100, and the size of every hidden layer
the same as embedding size. We set Δ𝑡 = 30 min, 𝜃𝑚 = 50 and
𝜃𝑃𝑀𝐼 = 0.2. We select the top 30 aspects of each brand and the
window size is 5. We divide the neighbors of each POI into four
sectors for the spatial oriented aggregation of SA-GNN. For spatial-
dependency attentive propagation, we set the bucket as 100 meters,
and the maximum distance in each dimension is 10km. We set the
grid size in the heat map as 500m×500m, set 𝐿 = 11 and select 12
categories as channels, which means 𝐶 = 12. In addition, we set
the learning rate to 0.01, the filter size of CNN to 2×2 and 3×3, the
number of attention head to 8, the dropout to 0.5, the 𝐿2 loss weight
to 1e-5. We use Adam [5] as the optimizing method and Relu as the
activation function 𝜎 (·)

For baseline models, we tune the parameters of each model to
ensure the best performance. More specifically, for the rule-based
methods, the threshold of distance for DIST is 4.2 km, and the
threshold of co-query edge weight for EW is 227, meaning that two
POIs are queried 227 times by common users. For feature-based
methods, we concatenate POI features of a pair of POIs and cor-
relation features as input to train MLP and XGboost. We adopt
three-layer structure for MLP. The numer of decision tree in XG-
boost is set to 200 and the max-depth of trees is set to 5. For fair
comparison, the embedding dimension d of all other baselines are
set to 100 (same as DeepR). For the graph embedding methods
(Deepwalk and Node2vec), we set the walk length as 10 and the
number of random walk as 80. The window size is set to 5, and
the parameter q and p for Node2vec are both set to 1. For GCN,
the input includes POI features and the average vector of aspect
embeddings learned from word2vec as the input feature of each
node, and GCN is conducted on co-query graph. For SEAL, we use
the output of Node2vec as the embedding part of the node features.
For GAT and Geom-GCN, the input is the same as the GCN. The
number of heads and the numbers of hidden units for GAT are
set to 8 and 16, respectively. We use the Struc2vec as the graph
embedding method to learn the latent space feature for Geom-GCN.
For HAN, we employ three meta-paths, i.e., PP (POI-POI), PBABP
(POI-brand-aspect-brand-POI) and PBP (POI-brand-POI) to train
the model.


	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Preliminaries
	3.2 Framework Overview

	4 HPIN Construction
	4.1 Spatial Heat Map Construction
	4.2 POI Relation Construction
	4.3 Aspect and Brand Relation Construction

	5 DeepR Framework
	5.1 Spatial Adaptive Graph Neural Network
	5.2 Pairwise POI Knowledge Extraction
	5.3 Prediction and Optimization

	6 Experiments
	6.1 Experiment Settings
	6.2 Performance Evaluation

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Additional Dataset Description
	A.2 Baseline Description
	A.3 Experiment Setup


